
An Event-driven, Value-based, Pull Systems
Engineering Scheduling Approach

Richard Turner
School of Systems and Enterprises

Stevens Institute
Hoboken, NJ, USA

rturner@stevens.edu

Raymond Madachy
Department of Systems Engineering

Naval Postgraduate School
Monterrey, CA, USA
rjmadach@nps.edu

Jo Ann Lane and Dan Ingold
Center for Systems and Software Engineering

University of Southern California
Los Angeles, CA, USA

{jolane, dingold} at usc.edu

David Anderson
David J. Anderson Associates

Seattle, WA, USA
dja@djaa.com

Abstract— Effective application of systems engineering in rapid
response environments has been difficult, particularly those
where large, complex brownfield systems or systems of systems
exist and are constantly being updated with both short and long
term software enhancements. This paper proposes a general case
for solving this problem by combining a services approach to
systems engineering with a kanban-based scheduling system. It
provides the basis for validating the approach with agent-based
simulations.

Keywords-systems engineering; systems engineering process;
lean; kanban; process simulation

I. INTRODUCTION AND BACKGROUND
Traditional systems engineering developed half a century

ago, primarily driven by the challenges faced in the aerospace
and defense industries. In rapid or continuous deployment
environments, where requirements are not precise and can
change or emerge quickly, traditional systems engineering has
often failed to perform its tasks within the available schedule
and resource bounds [1], [2]. Clearly, new and flexible
methods, processes and tools are required for effective systems
engineering in these environments.

Engineering principles involving agility and leanness have
been adopted to address non-determinism in software systems.
However, integrating these agility and leanness concepts into
the systems engineering workflow has proven difficult.
Leveraging work done in earlier research [3], [4], agile and
lean practice research [5–7], and including new experience
with lean approaches [8], [9], we are investigating the use of
flow-based pull scheduling techniques (kanban systems) in a
rapid response development environment.

A kanban scheduling approach provides a visual means of
managing the flow within a process. The fundamental idea is to
synchronize the flow of work with process capacity, limit the
waste of work interruption, minimize excess inventory or delay

due to shortage, prevent unnecessary rework, and provide a
means of tracking work progress [8]. In knowledge work, the
components of production are ideas and information [10], [11].
In software and systems, kanban systems have evolved into a
means of smoothing flow by balancing work with resource
capability. The concept was extended to include the limiting of
work in progress according to capacity. Work cannot be started
until there is an available appropriate resource. In that way, it is
characterized as a “pull” system, since the work is pulled into
the process rather than “pushed” via a schedule.

A software kanban system is usually implemented as a set
of process steps, each step with its own queue and set of
resources, that add value to development work units that flow
through them. The fact that queues are included in the system
allows costs of delay and other usually invisible aspects of
scheduling to be front and center in decision making. The
visual representation of the work, usually via a kanban board
(Fig. 1), is critical to kanban success, because it provides
immediate understanding of the state of flow through the set of
process activities.

This transparency makes apparent process delays or
resource issues and enables the team to recognize and react
immediately to resolve the cause. The process is managed
through Work in Progress (WIP) limits, small batch sizes, and
Classes-of-Service (COS) definitions that prioritize work with
respect to value and risk. Flow is measured and tracked through
statistical methods that provide insight to tune and improve the
system.

WIP is partially-completed work, equivalent to the
manufacturing concept of parts inventory waiting to be
processed by a production step. WIP accumulates ahead of
bottlenecks unless upstream production is curtailed or the
bottleneck resolved [12]. WIP in knowledge work can be
roughly associated to the number of tasks that have been started
and not completed. Limiting WIP is a concept to control flow

This material is based upon work supported, in whole or in part, by the U.S.
Department of Defense through the Systems Engineering Research Center
(SERC) under Contract H98230-08-D-0171. SERC is a federally funded
University Affiliated Research Center managed by Stevens Institute of
Technology 978-1-4673-0750-5/12/$31.00 ©2012 IEEE

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
An Event-driven, Value-based, Pull Systems Engineering Scheduling
Approach

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Stevens Institute of Technology,School of Systems and Enterprises,Castle
Point,Hoboken,NH,07030

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
6th Annual IEEE Systems Conference (SysCon) Vancouver, Canada, 19-22 March 2012.

14. ABSTRACT
Effective application of systems engineering in rapid response environments has been difficult, particularly
those where large, complex brownfield systems or systems of systems exist and are constantly being
updated with both short and long term software enhancements. This paper proposes a general case for
solving this problem by combining a services approach to systems engineering with a kanban-based
scheduling system. It provides the basis for validating the approach with agent-based simulations.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

and enhance value by specifically limiting the amount of work
to be assigned to a set of resources (a WIP Limit). WIP limits
accomplish several goals: they can lower the context-switching
overhead that impacts individuals or teams attempting to
handle several simultaneous tasks; they can accelerate value by
completing higher value work before starting lower value
work; and, they can provide for reasonable resource work loads
over time.

Using small batch sizes is a supporting concept to WIP to
further limit rework and provide flexibility in scheduling and
response to unforeseen change. Smaller batch sizes even out
the process flow and allow downstream processes to consume
the batches smoothly, rather than in a start-and-stop fashion
that makes inefficient use of resources. The move from “one
step to glory” system initiatives to iterative, deployable
increments is an example of reducing batch size. Incremental
builds and ongoing, continuous integration also approximate
the effect of small batch sizes.

In the remainder of the paper we will refer to the proposed
approach as a kanban-based scheduling system (KSS). While
not a true kanban in the manufacturing sense, the
characteristics are sufficiently similar to support the name.

II. PREDICTED BENEFITS OF THE PROPOSED APPROACH

A. More Effective Integration and Use of Scarce Systems
Engineering Resources
Using a KSS and applying a model of SE based on

continuous activities and taskable services is a value-based way
to prioritize the use of scarce SE resources across multiple
projects. The value function within the next-work selection
process can be tailored to provide efficient and effective
scheduling that maximizes the value provided by the resource
based on multiple, system-wide parameters. Additionally,
having service requests including time vs. value parameters can
help determine if the delay of other service requests fulfillment

is warranted by the current service request. This is addressed
further under the value function discussion.

B. Flexibility and Predictability
SE activities are generally designed for pre-specifiable,

deterministic (complete and traceable) requirements and
schedules. There is often an overdependence on unnecessary
formal ceremony and fairly rigid schedules. Using cadence
rather than schedule can provide efficient SE flow with
minimal planning. We believe that the CoS concept not only
handles expedite and date-certain conditions, but also supports
cross-kanban synchronization. Even though the planning is
dynamic and the selection of the next piece of work to do
asynchronous, we believe the use of a value-based selection
function, a time-cognizant service request, customized Classes
of Service, and a statistically controlled cadence provide a
sufficient level of predictability where necessary.

C. Visibility and Coordination Across Multiple Projects
In highly concurrent engineering tasks, the KSS provides a

means of synchronizing activities across mutually dependent
teams by coordinating their activities through changing value
functions (task priority) according to the degree of data
completeness and maturity (risk of change). The visible
monitoring of a kanban board also provides an excellent way to
show where tasks are and the status of work-in-progress and
queued or blocked work.

D. Low Governance Overhead
Implementing a KSS doesn’t require major changes in the

way work is accomplished or imply specific organizational
structures like other agile methods (e.g. Scrum). Such systems
can be set up in individual projects and allowed to evolve into
more effective governance over time as the project and the
organization as a whole understand the best way to attain value
from the practices. Even the systems engineering resource
scheduling can be implemented with very little organizational
impact. Practitioners make most decisions using parameters set
by management (e.g. WIP limits) and their own understanding
of the needs. Issues are usually identifiable on the visible
representation of the flow status and so are clear to all who take
part in scheduling, including management. Measurements
clearly identify problems and track improvements.

III. DEFINING THE APPROACH
In Fig. 2, Fig. 3, and Table I, we define our concept of a

KSS. We intend that this model be recursive at many levels to
allow for complex implementations.

While we currently believe tasks and their associated
parameters coupled with the visual representation of flow are
sufficient, we may introduce new concepts to enable better
communications and synchronization between the various
interacting systems.

Figure 1. Example Kanban Board [8]

!

Systems engineering has struggled with acceptance in
rapid-response environments, partly because it tends to operate
with a broader scope and with the assumption that a holistic
view requires a deeper and fuller level of knowledge than is
often available in the rapid response time frame. In rapid
response environments, the time scale often narrows the scope,
and detailed up-front analysis is perceived as less achievable.
Agile and lean assume holism comes from a learning process
and is valuable even when incomplete. The idea of using a pull
system for systems engineering is an attempt to merge the
breadth of SE into the rapid development rather than lay it on
top of the activities. Our idea of a KSS for systems engineering
is shown in Fig. 4. We believe it will support better integration
of SE into the rapid response software environment, better
utilize scarce systems engineering resources, and improve the
overall system-wide performance through a shared, more
holistic resource allocation component.

A. Systems Engineering as a Service
In general, systems engineering is involved in three kinds

of activities in rapid response environments: Up front,
continuous, and taskable.

Up front activities are critical in greenfield projects, but are
important in all systems and system of systems evolution. They
include creating operational concepts, needs analysis, and
architectural definitions.

Continuous SE activities are ongoing, system–level
activities (e.g. architecture, environmental risk management).
These require not only substantial time, but also the
maintenance and evolution of long-term, persistent artifacts
that support development across multiple projects.

Taskable activities are generally specific to individual

TABLE I. KANBAN SCHEDULING SYSTEM DEFINITIONS

Term Definition
Work Item The item controlled in the kanban system;

essentially, the kanban carrier
Effort Required Determines the approximate size of work in person-

units of time. May be a negotiated function of
desired quality.

Backlog A non-WIP-limited queue containing work items
items awaiting service by the initial activity in a
kanban system.

Cadence The rhythm of the production system. Not
necessarily an iteration. Kanban still allows for
iterations but decouples prioritization, delivery and
cycle time to vary naturally according to the domain
and its intrinsic costs. The average transit time of a
work item through a kanban system.

Activity Value-adding work that can be determined as
complete. Includes: activity queue, a set of
resources, and a WIP Limit. Represents an
allocation of the effort required to complete a work
item.

Resource An agent for accomplishing work; may be generic or
have specialized expertise. Includes: expertise-
productivity pair(s), where productivity is in effort
per unit time. Usually associated with a specific
activity, but may be shared across activities.

Procedure for
Selecting Next
Work Item

Rule for selecting the next work item from a queue
when an activity has less work than its WIP limit;
depends on both Class of Service and Value
Function, and leads to specific flow behaviors.

Class of Service Provides a variety of handling options for work
items. May have a corresponding WIP limit for each
activity to provide guaranteed access for work of
that class of service. CoS WIP limit must be less
than the activity’s overall WIP limit. Examples are
expedite, date-certain and normal. CoS may be
disruptive (such as expedite) and is the only way to
suspend work in progress.

Value Function Estimates the current value of a work item within a
CoS for use in the selection algorithm. Can be
simple (null value function would produce FIFO) or
a complex, multiple kanban-system, multi-factor
method considering shared scarce resources and
multiple cost/risk factors. The means of prioritizing
work items.

Activity Queue Holds work items within an Activity that are
awaiting processing. The sum of items in process
and items in activity queue must be within the WIP
limit for each CoS.

WIP Limit Limit of work items allowed at one time within an
activity.

Visible
Representation

A common, visual indication of work flow through
the activities; Often a columnar display of activities
and queues. May be manual or automated. Shows
status of all work-in-progress, blocked work, WIP
limits. It is a characteristic that provides
transparency enabling better management. Difficult
to model.

Flow Metrics Includes cumulative flow charting and average
transit (lead) time.

Figure 2. Kanban Scheduling System Model

!"#$%&'()*+,-.(

/0101(
)/+,2.(

345()*+,6.(

345()74(*+.(

89:0&(
/0101(

*4;<(
=>4?(

*4;<(8&1@()74;@A>(345.(

*8B(

CA"<>4D(

34@:>1&1E(
*4;<(

*4;<(8&1@()5:1"%A>(345.(

Figure 3. Kanban Scheduling System Hierarchy !

System'of'Systems/Enterprise'

System'KSS'

System'

Project'KSS'

Project'KSS'
'

Project'KSS'
'

Project'KSS'
'

Sub6Project'KSS'

projects (e.g. trade studies, interface management), but will
certainly draw on the persistent SE artifacts and knowledge.

By viewing the development and use of persistent artifacts
as key components of services provided to various projects, SE
can be opportunistic in applying its cross-project view and
understanding of the larger environment to specific projects
individually or in groups. It can also broker information
between individual projects where there may be contractual or
access barriers. When a system-wide issue or external change
occurs, SE can negotiate or unilaterally add or modify tasks
within affected projects to ensure that the broader issue is
handled in an effective and compatible way. This is reminiscent
of the agile management layer described in the iteration
management approach in [13], and the approach envisioned can
extend that concept throughout the rapid response lifecycle and
across the multiple projects.

SE performs its services in parallel to those activities in the
requesting project and then pushes the results to the requestor
as soon as available. This is aimed at supporting the timeliness
of projects, so that work can continue, even if at a higher risk
of rework, unless waiting for the results is blocking all other
work in the project (not a good thing).

SE services require persistent artifacts and knowledge for
both requestor-specific and total system artifacts/understanding.
The quality of a requested service could be pre-specified,
specified as a parameter or input with service request, or could
be negotiated as a function of typical value and time available
to provide the service. In a KSS, SE services can be thought of
as a single activity. The value function used to select the next
request to be handled must be designed to identify the highest
cost of delay among the queued requests in terms of the overall
system value. This allows SE to be a effective as possible in
providing its services across the enterprise. The function could
be based on several parameters that are attributes of individual
projects, individual requests, or system-wide activities.
Possibilities include the maturity of the requesting project,
lifecycle point of requesting project, criticality of the
requesting project, and value/cost of delay/priority/class of
service or other characteristics of the work impacted by the
service requested. The details will be critical to achieve system
wide benefits without impacting individual project timeliness.
Only through modeling is the impact of various approaches to
the value function determinable. In fact, modeling should be
able to help identify the sweet spot of the amount and type of
SE activity that produces the most value with the lowest impact

to quality. Statistical and other measures will be needed to
track the performance and improve the value function in vivo.

Table II describes categories of services, specific
characteristics.

IV. MODELING THE APPROACH

A. Goals of the Model
The overall goal of the modeling component of this

research task is to verify whether organizing projects as a set of
cooperating kanbans (a kanban-based scheduling system, KSS)
results in better project performance. Performance is measured
through a value function, and better performance is defined as
achieving value along one or more of the following scales,
which seem most relevant to the rapid-response environment:

• Shortest-time to initial-value

• Highest-value in the quickest-time

• Highest-value for a given-time

B. Modeling Strategies
Three approaches to modeling were considered for this

research:

• System dynamics modeling

• Discrete-event modeling

• Agent-based modeling

As seen in Fig. 5, each of these modeling approaches has
advantages for the problem domain and level of abstraction.

System dynamics models operate at a high-level of
abstraction, and require the modeler to understand a priori the
relationships among concepts, which are modeled as a set of
interacting feedback loops [14]. They work by accumulating
continuous flow quantities (representing a quantity of
documents, tasks, personnel, etc.) over time to create
cumulative “levels” of those quantities. A given flow and its

Figure 4. Overview of SE as a Service concept !

Front&end)
SE)work) On&going)SE)Services)

SE)System&wide)Ar7facts)and)Knowledge)

Rapid)response)SW)projects)

External)Issues/Changes)

SE)Service)request)
from)SW)project)
SE)tasking/changes)
SE)systemic)ac7vity)

TABLE II. SYSTEMS ENGINEERING SERVICE CATEGORIES

Category Description Usage
Translating Capability
Objectives

Proxy for customer; support for
requirements management
activities

Continuous;
Taskable

Understanding
Systems
and Relationships

View across multiple projects;
Persistent memory across time
and teams

Continuous;
Taskable

Assessing Performance
Against Capability
Objectives

Validation of TPMs or other
performance requirements;
typical V&V type activities

Continuous;
Taskable

Developing and
Evolving Architecture

Providing design guidance and
supporting common architectural
patterns across multiple projects

Continuous;
Taskable

Monitoring and
Assessing Changes

Supporting flexibility and agility
by providing surveillance of the
external environment and
identifying issues and changes
that might affect projects

Continuous;
Taskable

Trade Studies and
Decision Support

Supporting system-informed
decision making by providing
independent, competent
analytical services to the projects

Taskable

associated levels are homogeneous—that is, not divisible into
discrete items—and modeling concepts of different types
requires creating a separate flow for each type. In this
research, the attributes of different work items—arrival time,
duration, value-function, and desired quality-function—are
expected to affect the overall performance of the system. The
homogeneity of flows in systems dynamics models therefore
seems less well suited to simulate these types of interactions.

Discrete-event models operate at a low-level of abstraction,
and consider the effect of events that occur at specific points in
time by simulating the movement of discrete entities through
blocks [14]. An entity (most likely representing an individual
work item) is a passive construct, but can have individual
characteristics that affect how the entity is processed in the
simulation, for each block through which it passes. These per-
entity characteristics, unlike the homogeneous flows of systems
dynamics, seem better suited for modeling the attributes of the
specific work items in this research. A discrete-event model is
not well-suited to modify the emergent behavior of agents that
act on these entities, however, and this behavior must be
understood a priori and programmed into the model.

Agent-based models are similar to discrete-event models,
but the entities modeled can be active objects, having attributes
and performance, and active agents, having behaviors and
executing work processes. While the behavior of the individual
agents, and actions that can be taken by the objects, are pre-
specified, system-level behavior may emerge from the
interaction of agents with objects, and with other agents, that
may be impossible to predict, and hence to model using the
other modeling approaches. This aspect of agent-based models
seems well suited to the research problem, since the intentional
behavior of the human agents in projects is relatively simple
and well known, while the emergent systemic results of their
interactions in a KSS are not. Agent-based models have the
further capability of modeling beliefs and desires, which
although not explored in this research, may be useful to
construct more realistic behavior in the future.

C. Tool selection
Two agent-based modeling tools were examined for use in

this research: the Recursive Porous Agent Simulation Toolkit
(Repast), originally developed by the University of Chicago;
and Brahms, developed for NASA Ames Research Center.
Repast is an open-source toolkit that researchers can use to

develop agent-based models (ABMs) in Java, Python, and
many other languages. Brahms is a Java-based proprietary tool
that provides an integrated framework within which ABMs are
developed. Other tools considered include MASON and
Swarm.

Both tools exhibit steep learning curves. Due to the short
timeframe of this research task, the work process-oriented
Brahms was considered the lower risk approach of the two.
Once the model design is fully established, and preliminary
results are obtained, however, the additional analysis tools that
Repast provides may make it worthwhile to convert the model
in subsequent research.

D. Agent-based model design
Similar to the discrete-event strategy described in [15], the

elements of the agent-based model include the concepts:
Kanban, Backlog queue, Activities, Resources, Work Items,
Release queue, Customer and WIP limits

E. Model workflow
Figure 6 diagrams the relationship of these concepts within

the agent-based model for the KSS. The model is composed of
one or more kanbans, each of which represents a project or, as
will be seen, a pan-project team. Each kanban is composed of
a backlog queue, one or more serialized activities, and a release
queue. Resources work within an activity, pulling completed
work items from the next upstream activity (or incomplete
items from the backlog, if the resource is in the first activity of
a kanban), and taking some amount of time to complete each
work item. The release queue pulls completed work items
from the last activity of a kanban, at which point the work item

Figure 5. Modeling approach vs. abstraction level [14]

Figure 6. Agent-based model of kanban-based scheduling system !

is considered fully complete. The customer is the source of all
work items that enter the system, which are pushed onto the
backlog of one of the kanbans for processing.

Resources are the human agents whose actions take
incomplete work items and transform them, with more or less
fidelity and taking varying amounts of time, into completed
work items. The activity within which each resource works is
constrained to a maximum work-in-process (WIP) limit, and at
any point in time each activity contains no more than the WIP-
limited number of work items, queued or in-process. Within
each activity, some work items are queued awaiting the next
available resource, and some are being processed by those
resources. Work items are assigned an estimated duration and
a value function at creation, and move through the system by
being pulled from upstream activities into the next downstream
activity, or the release queue.

This modeling approach offers additional flexibility over
the model employed by [15]. The simplest system can be
modeled with a single-activity kanban, with its backlog and
release queues. More complex models can have multiple
kanbans, each with multiple activities, where the release queue
of the upstream kanban feeds the backlog queue of downstream
kanbans. This flexibility allows the modeling of more realistic
projects, to see how the interaction of multiple kanbans might
affect project performance.

F. Development-SE feedback
The high-level flow of information through the KSS is

presented in Figure 7. The customer is the source of high-level
requirements inserted into the workflow by pushing them to the
backlog of the systems engineering kanban. Systems
engineering elaborates each requirements into multiple lower-
level work items, assigns a value function to each, and pushes
the work items into the backlog of one or more development
kanbans. The resources assigned to the development kanbans
select the next work item based on its value function, and take
some amount of time to complete it. Once complete, the work
item is pulled by the next downstream activity not described in
this diagram).

We assume that, due to the time constraints of the rapid-
response environment, systems engineering creates work items
and releases them to development even though their design
might be incomplete. This early release is necessary to avoid
the large delay that would be inherent in performing a “big
design up front” (BDUF), and enables development to proceed
in parallel with systems engineering. We further assume that
this partially-complete design leads to defects that might have
been avoided or lessened in BDUF, and that these defects are
detected later in the development (or some downstream)
process. Such defects are then fed back as a service request,
tagged with the time-criticality of the request, for systems
engineering to resolve. The time-criticality informs systems
engineering how quickly the request must be resolved.

Systems engineering resolves service requests with some
defect rate that is proportional to the time criticality—that is,
with some probability, requests that must be serviced in a
shorter period will have more defects. Systems engineering
completes the feedback loop by pushing a work item that

results from processing the service request, with its potential
additional defects, to the development kanban. The cycle may
repeat if further defects are detected during development of the
completed request.

V. CONCLUSIONS AND FUTURE WORK
The work so far has been in progressive elaboration of the

concept, model, and simulations. Initial results have been

Figure 7. Information flow through KSS

 !

promising, but more work is needed to better understand how
SE services are defined and requested, how the various levels
of systems engineering (enterprise, system and project)
establish value, how the various value functions are actually
applied, and whether the social aspects of such a model impact
its viability.

A number of industry and government entities have
expressed interest in this approach, and some support for pilot
opportunities. To support that interest, the next phase of the
research will develop a demonstration and research platform
for introducing the kanban-based, services approach to systems
engineering in rapid response environments. The approach will
be refined to specifically address a three-level SE hierarchy
including project/program, portfolio, and enterprise levels of
systems engineering activity. Infrastructure for simulating
social aspects will be included, but no specific research in this
area will occur in this phase.

The platform will consist of an integrated set of simulations
and a user interface. It will include reference baselines against
which new simulations runs may be compared, as well as a
means of storing information gathered in non-attributive
fashion for benchmarking.

Testing of the platform will include comparison to the
reference baselines for a typical application of the approach.
An experimental validation of the kanban/SE as service
concept will be conducted using an actual historical project
with inter-task dependencies, relative stakeholder values for the
task, pre-effort planning information, and post effort actuals.
The experiment will use the task sizes, values and
dependencies to compare how well the IMS and KSS
approaches achieve one or more of the value goals (e.g. highest
value earliest, most total value).

REFERENCES
[1] NDIA - National Defense Industries Association, “Top Systems

Engineering Issues In US Defense Industry.” Systems Engineering
Division Task Group Report, Sep-2010.

[2] R. Turner and F. Shull, “Evaluation of Systems Engineering Methods,
Processes and Tools on Department of Defense and Intelligence

Community Programs: Phase I Final Report,” Systems Engineering
Research Center, SERC-2009-TR-002, Sep. 2009.

[3] R. Turner and F. Shull, “Evaluation of Systems Engineering Methods,
Processes and Tools on Department of Defense and Intelligence
Community Programs: Phase 2 Final Report,” Systems Engineering
Research Center, SERC-2009-TR-004, Dec. 2009.

[4] R. Turner and J. Wade, “Lean Systems Engineering within System
Design Activities,” in Proceedings of the 3rd Lean System and Software
Conference, Los Angeles, CA, 2011.

[5] B. Boehm and R. Turner, Balancing Agility and Discipline: A Guide for
the Perplexed. Boston: Addison-Wesley, 2004.

[6] C. Larman and B. Vodde, Scaling lean & agile development: thinking
and organizational tools for large-scale Scrum. Pearson Education,
2008.

[7] M. Poppendieck and T. Poppendieck, Implementing Lean Software
Development: From Concept to Cash, 1st ed. Addison-Wesley
Professional, 2006.

[8] D. J. Anderson and D. G. Reinertsen, Kanban: Successful Evolutionary
Change for Your Technology Business. Sequim, Washington: Blue Hole
Press, 2010.

[9] D. G. Reinertsen, The Principles of Product Development Flow: Second
Generation Lean Product Development, 1st ed. Celeritas Publishing,
2009.

[10] M. Poppendieck and T. Poppendieck, Lean Software Development: An
Agile Toolkit. Boston: Addison-Wesley, 2003.

[11] J. M. Morgan and J. K. Liker, The Toyota Product Development System:
Integrating People, Process And Technology. Productivity Press, 2006.

[12] E. M. Goldratt and J. Cox, The Goal: A Process of Ongoing
Improvement, 3rd Revised. North River Pr, 2004.

[13] B. Boehm, “Applying the Incremental Commitment Model to
Brownfield System Development,” Proceedings, CSER, 2009.

[14] A. Borshchev and A. Filippov, “From system dynamics and discrete
event to practical agent based modeling: reasons, techniques, tools,” in
Proceedings of the 22nd International Conference of the System
Dynamics Society, 2004, pp. 25–29.

[15] D. Anderson, G. Concas, M. I. Lunesu, and M. Marchesi, “Studying
Lean-Kanban Approach Using Software Process Simulation,” in Agile
Processes in Software Engineering and Extreme Programming, vol. 77,
A. Sillitti, O. Hazzan, E. Bache, and X. Albaladejo, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 12–26.

